Solving global health and development problems for those most in need
  • About
  • Annual Meeting
  • Grant Opportunities

Explore Awarded Grants

Grants List
Initiative (13)
Select
Challenge (121)
Select
Start Year (16)
Select
Continent/Region (6)
Select
Country (118)
Select
State/Province (99)
Select
3456Awarded Grants
118Countries
Hide Filters
Toggle close
10
Results per page
Export Grant Listing

Goat Extension and Marketplace with Vets and Value-Addition

Sanjeev Kumar, The Goat Trust (Lucknow, Uttar Pradesh, India)
Nov 1, 2021

Sanjeev Kumar of The Goat Trust in India will develop animated mobile applications that provide information on improving productivity, veterinary and financial services, and markets for women goat herders in the Indian states of Uttar Pradesh and Bihar to increase their income. These women work in remote regions with limited support, and many are illiterate. They will develop simple applications with health, nutrition, animal husbandry, a marketplace, and management components, and integrate value-chain players such as products and services suppliers. In health, they will develop a decision support tool to help farmers identify diseases using 141 symptoms and to select the most suitable treatment in consultation with vets. For the marketplace, farmers will be able to order quality products and pay directly. There will also be a web-based platform for goat sales. They will develop the applications in consultation with farmers and other stakeholders, and perform pilot testing.

EquiFarm Integrated Digital Platform

Esther Muiruri, Equity Group Foundation (Nairobi, Kenya)
Oct 29, 2021

Esther Muiruri of Equity Group Foundation in Kenya will expand their Equity Online-Agriculture platform to provide information on agricultural best practices, including smart-farming innovations, as well as access to financing and markets to initially 200,000, and subsequently up to two million, small-scale farmers in Kenya to improve their productivity and income. They will build the platform to digitally disseminate agricultural information such as soil testing and pest and disease control, which will improve timely planting and crop and livestock management. They will also build in training in financial literacy targeted towards women, who make up the majority of agricultural workers, and access to financial support and tailored insurance products by implementing e-vouchers and loans, digital wallets and a credit scoring system. Market information and direct contacts with potential buyers will also be provided through an online platform.

Livestock Weight Detection Using Computer Vision-Based Smartphone App for Accurate Service Delivery

Sadhli Roomy, Acme AI Ltd. (Dhaka, Bangladesh)
Oct 29, 2021

Shafiq-ul Islam of ACME AI in Bangladesh will produce a smartphone-based system that uses computer vision and machine learning to accurately estimate the weight of cows and goats to help smallholder livestock farmers in rural Bangladesh maximize productivity and profits. Accurately determining livestock weight is challenging for these farmers but critical for determining the right amounts of food and medicines. They will develop a machine learning model and mobile application that uses the smartphone’s camera to process distance, height, and depth information and calculate the weight of the animal to within >90% accuracy. They will test three different business cases, including combining the computer vision-based weighing system with products and service providers, and evaluate the impact on food and medicine purchases, and animal growth and quality, which are directly linked with income.

Correlating SARS-CoV-2 Variants from Wastewater with Clinical Cases in South Africa

Mukhlid Yousif, Wits Health Consortium (Proprietary) Limited (Johannesburg, South Africa)
Oct 26, 2021

Mukhlid Yousif of Wits Health Consortium in South Africa will sequence SARS-CoV-2 in sewage samples collected periodically from 40 wastewater treatment facilities across South Africa for the early detection of potentially dangerous variants to inform public health policies. Genome sequencing using sewage samples can monitor the molecular epidemiology and diversity of circulating SARS-CoV-2 variants, and also identify new variants even before they can be detected in the clinic. They will collect a total of 528 wastewater samples over a twelve-month period and process them for sequencing to identify novel mutations or mutations that are unique to variants-of-concern, especially those not yet reported in Africa. They will also compare these data with sequences of SARS-CoV-2 variants from local COVID-19 patients to support interpretation of wastewater sequencing results. Results will be immediately published online and communicated to provincial and national COVID incident management teams.

Expansion of PGS Capacity for Genomic Surveillance of SARS-CoV-2 in the Republic of Congo

Francine Ntoumi, Fondation Congolaise pour la Recherche Medicale (Brazzaville, Congo - Brazzaville)
Oct 26, 2021

Francine Ntoumi of the Fondation Congolaise pour la Recherche Medicale in the Republic of Congo will set-up a national SARS-CoV-2 genomic surveillance system by increasing sequencing capacity to monitor viral variants-of-concern and determine the impact of vaccines on disease transmission to inform public health decisions. They will perform a cohort study by collecting oropharyngeal samples from patients at COVID-19 testing centers in the two largest cities, which account for 80% of the country’s new infections, and sequence around 60 SARS-CoV-2-positive samples per month to determine the prevalence of variants. These will be combined with existing COVID-19 epidemiological and clinical data to determine the virulence, transmissibility, and symptoms associated with new and existing viral variants-of-concern. They will also analyze blood samples from vaccinated and unvaccinated COVID-19 patients to evaluate their immune responses and combine these with socio-demographic and clinical data to determine vaccine effectiveness.

Nature-Inspired Identification of Novel Antivirals with Distinctive Mechanisms of Actions: Case of HIV and SARS-CoV-2

Fidele Ntie-Kang, University of Buea (Buea, Cameroon)
Oct 26, 2021

Fidele Ntie-Kang, a computational chemist at the Department of Chemistry, University of Buea in Cameroon, will establish a state-of-the-art drug discovery regional center for Central Africa that utilizes natural products from across the continent to identify new antiviral drugs suitable for resource-limited regions. Dr. Ntie-Kang is a pioneer in harnessing the diverse African flora for drug discovery purposes. His research group is building an online natural products database, which contains compounds isolated from plants, fungi, corals and bacterial species growing in Africa. He will set up a unique team of synthetic organic chemists, natural product chemists, computational chemists, microbiologists, biochemists and artificial intelligence experts, and build an open access pan-African library of naturally occurring compounds and a cloud-based computing platform. The team will combine virtual and in vitro screening techniques to identify natural compounds targeting the SARS-CoV-2 spike protein and the HIV Vpu protein, as well as promoting HIV latency-reversal. They will also train students to expand research capacity, and transfer the knowledge and technology developed during the project to other research institutes.

Enhancing Prediction of Adverse Pregnancy Outcomes in Africa Through Partnerships and Innovation

Annettee Nakimuli, Makerere University (Kampala, Uganda)
Oct 20, 2021

Annettee Nakimuli, Associate Professor of Obstetrics and Gynaecology and Dean of the School of Medicine at Makerere University in Uganda, will identify predictors of adverse pregnancy outcomes in Ugandan women with a focus on Great Obstetrical Syndromes (GOS), such as pre-eclampsia, to help develop context-relevant interventions for prevention and treatment. Dr. Nakimuli is an internationally-recognized research leader in maternal health for Africa. She performed the first genetic case-control study on pre-eclampsia among indigenous Africans, and identified different biological factors to those found in European studies, which helps explain the higher incidence. Building on her experience setting up cohort studies, she will prospectively collect biological samples and clinical data from a large cohort of 4,000 women throughout their pregnancies at Kawempe and Mulago Hospitals in Kampala to identify predictive biomarkers, and establish a biobank and database to facilitate future research. She will also implement artificial intelligence for data analysis to identify relevant socio-epidemiological, clinical, and biological features that contribute to the development of Great Obstetrical Syndromes.

Investigating the Immune Kinetics of COVID-19 Vaccine Responses Between European and African Populations

Yaw Bediako, Yemaachi Biotechnology Ltd. (Accra, Ghana)
Oct 20, 2021

Yaw Bediako, Founder and Chief Executive Officer of Yemaachi Biotech and researcher at the West African Centre for Cell Biology and Infectious Pathogens in Ghana, will bring together African biotech and academia with the Francis Crick Institute to provide important insights into how vaccines can be designed to work more optimally among African people. The African continent has the highest infectious disease burden in the world but almost no capacity for vaccine development or testing. Instead, most vaccines are tested in healthy Caucasian adults in high income countries, and many have lower efficacy among African populations. Dr. Bediako studies immune function in African populations and is devoted to building research capacity in Africa. He developed and successfully deployed the first national SARS-CoV-2 variant tracker on the continent, which displayed the distribution of viral variants in real-time. He will perform a prospective cohort study, and use molecular, cellular, and data-analysis approaches to investigate if the cellular and humoral immune responses to the AstraZeneca COVID-19 vaccine differ between Ghanaian and UK populations, and identify the effect of host genetic diversity on vaccine response. These data will support more rational vaccine design among African populations.

Genomics for Infectious Diseases Control and Epidemics Preparedness

Abdoulaye Djimde, Pathogens Genomic Diversity Network Africa (PDNA) (Bamako, Mali)
Oct 19, 2021

Abdoulaye Djimde, President of the Pathogens genomic Diversity Network Africa (PDNA), will work to better prepare Africa to fight infectious diseases and tackle those of the future. Dr. Djimde’s research group uses molecular and genetic approaches to study malaria, and their results have supported policy decision-making in Mali and the West Africa sub-region. His work on anti-malarial resistance led to a change in first-line therapy, and his group also serves as a training ground for many scientists in Africa. Recognizing the importance of collaborative research across the continent for studying infectious diseases, he established PDNA, which is an African-led research network spanning sixteen countries. PDNA investigates the genetic diversity of human pathogens to inform disease control and elimination strategies. He will set up a PDNA Pathogens Genomics Institute in Mali equipped with genetic and molecular epidemiology infrastructure. The Institute will train the next generation of scientists, and study the emergence and spread of malaria, SARS-CoV-2, and anti-microbial resistance, and identify novel pathogens. They will also focus on engagement with communities and health policy makers across the member countries to support public health on the continent.

Integrating Malaria Molecular Epidemiology into Routine Surveillance in Kenya

Isabella Oyier, KEMRI-Wellcome Trust Research Programme (Kilifi, Kenya)
Oct 19, 2021

Isabella Oyier, Associate Professor and Head of Bioscience at the KEMRI-Wellcome Trust Research Programme in Kenya, will establish a national malaria molecular surveillance platform that is integrated into the Division of National Malaria Programme (DNMP) to directly translate research into policy. The malaria burden in Africa is no longer declining due to the emergence of new variants that are undetectable by standard diagnostics and resistant to the frontline antimalarial drug. Dr. Oyier, a leader in malaria molecular epidemiology, is committed to eradicating malaria in Africa. She pursues a collaborative approach by sharing resources across laboratories and partnering with key stakeholders to ensure research impacts policy. This approach enabled her to make critical contributions to the genomics surveillance and testing efforts during the COVID-19 pandemic in Kenya. She will establish a national data repository and a working group to develop a sustainable next-generation sequencing platform that can be easily implemented across malaria-endemic regions where sentinel health facilities will be established to collect samples. She will also build user-friendly bioinformatics pipelines to examine parasite genetic diversity and the distribution of resistance markers, and to present actionable data for policy decision-making.

10
Results per page

Great ideas come from everywhere.

Grand Challenges is a family of initiatives fostering innovation to solve key global health and development problems.

Boy reaching for fruit

News & About

Global Grand Challenges Partners

More Partners
  • Grand Challenges Africa logo
    Grand Challenges Programs
More Partners

Privacy Policy and Terms of Use

©2003-2021 Grand Challenges. All rights reserved